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ABSTRACT: The High-Resolution Rapid Refresh (HRRR) is a convection-allowing implementation of the Advanced
Research version of the Weather Research and Forecast (WRF-ARW) Model that covers the conterminous United States
and Alaska and runs hourly (for CONUS; every 3 h for Alaska) in real time at the National Centers for Environmental
Prediction. The high-resolution forecasts support a variety of user applications including aviation, renewable energy, and
prediction of many forms of severe weather. In this second of two articles, forecast performance is documented for a wide
variety of forecast variables and across HRRR versions. HRRR performance varies across geographical domain, season,
and time of day depending on both prevalence of particular meteorological phenomena and the availability of both con-
ventional and nonconventional observations. Station-based verification of surface weather forecasts (2-m temperature and
dewpoint temperature, 10-m winds, visibility, and cloud ceiling) highlights the ability of the HRRR to represent daily plan-
etary boundary layer evolution and the development of convective and stratiform cloud systems, while gridded verification
of simulated composite radar reflectivity and quantitative precipitation forecasts reveals HRRR predictive skill for summer
and winter precipitation systems. Significant improvements in performance for specific forecast problems are documented
for the upgrade versions of the HRRR (HRRRv2, v3, and v4) implemented in 2016, 2018, and 2020, respectively. Develop-
ment of the HRRR model data assimilation and physics paves the way for future progress with operational convective-
scale modeling.

SIGNIFICANCE STATEMENT: NOAA’s operational hourly updating convection-allowing model, the High-Resolution
Rapid Refresh (HRRR), is a key tool for short-range weather forecasting and situational awareness. Improvements in
assimilation of weather observations, as well as in physics parameterizations, has led to improvements in simulated ra-
dar reflectivity and quantitative precipitation forecasts since the initial implementation of HRRR in September 2014.
Other targeted development has focused on improved representation of the diurnal cycle of the planetary boundary
layer, resulting in improved near-surface temperature and humidity forecasts. Additional physics and data assimilation
changes have led to improved treatment of the development and erosion of low-level clouds, including subgrid-scale
clouds. The final version of HRRR features storm-scale ensemble data assimilation and explicit prediction of wildfire
smoke plumes.

KEYWORDS: North America; Operational forecasting; Mesoscale models; Numerical weather prediction/forecasting;
Regional models

1. Introduction

On 30 September 2014, the first version of the High-Resolution
Rapid Refresh (HRRR) numerical weather prediction (NWP)
system was operationally implemented at the U.S. National
Oceanic and Atmospheric Administration (NOAA) National
Centers for Environmental Prediction (NCEP). Building upon

the successful implementation of the hourly updated 13-km
Rapid Refresh (RAP) system in 2012 (e.g., Benjamin et al.
2016, hereafter B16), this implementation marked a major
milestone in U.S. NWP as the HRRR provided the first opera-
tional hourly updated convection-allowing model (CAM) guid-
ance covering the conterminous United States. The HRRR
now represents a critical prediction tool for operational fore-
casters in the United States, and serves as an initial baseline
capability for future generations of CAM guidance to build
upon. The first article of this two-part series (Dowell et al. 2022,
hereafter D22) documents the system design of the HRRR
model; in this article, we quantify forecast performance by the
HRRR in its various incarnations from version 1 to version 4.

The goal of the HRRR system is to analyze and predict, as
accurately as possible, the short-range (0–18 h) evolution of
the atmosphere, to support weather-sensitive decisions. The
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relatively fine grid spacing (3 km) in the HRRR allows deep,
moist convection to evolve explicitly on the model grid; this
permits much more realistic forecasts compared to models
with parameterized convection, not just for convective storms
but also for other phenomena such as orographic precipita-
tion, mesoscale precipitation bands, and local wind circula-
tions. Since our Earth’s atmosphere affects many sectors of
society, the HRRR necessarily has many stakeholders from
various fields of analysis and forecast application. A timeline
of the development of the various incarnations of the HRRR
in Fig. 1 presents its emerging new applications over the years.
As the HRRR’s treatment of atmospheric physics and Earth
system processes has increased in complexity from version to
version, with the implementation of a host of changes with
each new version, new stakeholders and collaborators have
begun to use HRRR forecasts for their applications. The inter-
connected nature of Earth system components often means that
improved forecasts for one particular application have positive
impacts for other forecast applications, but also increases the
number of metrics needed for evaluation of each new version.
Accomplishing improvements across all application areas is a
challenging task, and development efforts need to be carefully
coordinated. Changes are prioritized which target known biases,
with additional efforts focused on exploring other potential data
assimilation (DA) or physics improvements. User requests for
specific additional output, such as increased temporal or vertical
resolution, or output variables requiring inline computation, are
considered where possible, but are often a lower priority than
opportunities for more advanced DA or physics approaches.

A number of researchers have undertaken to evaluate
HRRR forecasts for individual phenomena or particular ap-
plications. Table 1 summarizes HRRR evaluation studies of
which the authors are aware. Phenomena investigated in these
articles range from winter precipitation type and amounts
(e.g., Ikeda et al. 2013, 2017; Dougherty et al. 2021; English

et al. 2021) to convective storm prediction (e.g., Pinto et al.
2015; Bytheway and Kummerow 2015; Bytheway et al. 2017;
Duda and Turner 2021), to detailed evaluations of planetary
boundary layer (PBL) structure (e.g., Fovell and Gallagher
2020) and surface fluxes (e.g., Lee et al. 2019). In this paper,
we provide a more comprehensive quantification of HRRR
forecast performance, with a particular emphasis upon dem-
onstrating the improvements stemming from subsequent ver-
sions of the HRRR.

Changes toward HRRR improvements have been designed
through a combination of statistical evaluation and ongoing
discussions on HRRR behavior with users from NWS and
others in the aviation, energy, and severe weather communi-
ties. Feedback from forecasters on deficiencies in HRRR
forecasts is often tied to individual events, but over time con-
sistent signals emerge which help target improvements for
subsequent versions. It is important to note that the HRRR
cannot be expected to perfectly capture every event due to the
chaotic nature of the atmosphere, and it often exhibits run-to-
run variability in timing, spatial extent, or even occurrence for
high-impact events, particularly in more uncertain situations.
This highlights the need for convection-allowing ensembles
[e.g., the NOAAHigh Resolution Ensemble Forecast (HREF;
Jirak et al. 2018) now including HRRRv4] and statistical
postprocessing [e.g., the National Center for Atmospheric Re-
search neural network probability forecasts (Sobash et al.
2020) also using HRRRv4] to avoid overreliance on determin-
istic HRRR predictions.

In this article, evaluation is generally carried out based on
real-time results from both the experimental and operational
HRRR, but results from controlled retrospective tests are
also shown where appropriate. Section 2 describes forecast
performance, beginning with verification of simulated radar
reflectivity forecasts and quantitative precipitation forecasts
(QPF), followed by surface weather forecasts (2-m temperature

FIG. 1. Timeline of HRRR development and the consideration of new forecast applications for the HRRR’s rapidly updating prediction
system. Light gray boxes indicate the research and development period for each HRRR version, darker gray boxes indicate the transition
to operations, and solid black boxes indicate HRRR versions running in operations. Key collaborators are mentioned for each forecast ap-
plication area.
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and dewpoint, and 10-m wind speed), and cloud ceiling and
visibility forecasts. The final section discusses conclusions, and
outlines future directions for convection-allowing modeling in
the post HRRRv4 era.

2. Verification of HRRRv1–HRRRv4

This section provides a summary of quantitative forecast
performance by the HRRR system, as implemented in versions
1–4 (see D22, their Table 2). Forecast performance exhibits
distinct diurnal and seasonal cycles, and performance also
varies with forecast lead time. It is beyond the scope of this
study to present verification for all variables across the seasonal
and diurnal cycles and with forecast lead time, but we present
a subset of these results that illustrate the main improvements
with each subsequent version of the HRRR.

Results are presented based primarily on real-time verifica-
tion statistics for the CONUS-domain experimental HRRR,
run at NOAA/GSL since 2010 (see D22, their Table 2), and
the operational HRRR, run at NCEP Central Operations
(NCO) since 2014. Results from the experimental HRRR are

included because the period of record extends back well before
the operational implementation of HRRR in September 2014,
allowing us to include an earlier preoperational version of
the HRRR in our analysis. While controlled retrospective
experiments have been carried out and evaluated for each op-
erational upgrade of the HRRR, these multi-season experimental
retrospective periods are no more than a month each in length,
and they do not overlap, which would greatly increase the num-
ber of figures required to illustrate changes between HRRR
versions. While showing “unmatched” real-time verification for
various versions of the HRRR is strictly not a controlled com-
parison, using a long time period (i.e., an entire warm season,
15 April–15 October) for each version ensures that the results
are sampling the same seasonal cycle, despite some differences
in mean meteorological conditions from year to year. Through-
out the remainder of this article, “warm season” refers to the
period 15 April–15 October, while “cool season” refers to the
period 15 October–15 April. To confirm that the unmatched
year-to-year comparisons between HRRR versions are not
unduly affected by changes in meteorology from year to
year, we examined multiple years per HRRR version where

TABLE 1. Previously published articles evaluating specific aspects of HRRR performance. “Retro” indicates the data were taken
from a set of retrospective simulations for a particular case or cases.

Study Focus HRRR version Region Period of study

Ikeda et al. (2013) Winter precipitation
and precipitation
type

Experimental pre-
HRRRv1

Eastern CONUS 30 Jan–31 Mar 2011

Pinto et al. (2015) Warm season VIL
objects

Experimental pre-
HRRRv1

CONUS JJA 2012, 2013

Bytheway and
Kummerow (2015)

Warm season QPF
objects

Experimental
HRRRv1

Central CONUS MJJA 2013

Griffin et al. (2017a) Simulated satellite BTs Experimental
HRRRv2

Central and eastern
CONUS

23–24 Jul 2015

Griffin et al. (2017b) Simulated satellite BTs Experimental
HRRRv2

CONUS August 2015 and January 2016

Ikeda et al. (2017) Surface precipitation
type

Experimental
HRRRv1-v2

Eastern CONUS DJF 2013/14, 2014/15

Bytheway et al. (2017) Warm season QPF
objects

Experimental
HRRRv1-v2

Central CONUS JJA 2013, 2014, 2015

McCorkle et al. (2018) Surface weather
conditions

Experimental
HRRRv2-v3

Alaska December 2016–June 2017

Lee et al. (2019) Surface energy budget HRRRv2 Northern Alabama September 2016–April 2017
Pichugina et al. (2019) Winds in complex

terrain
HRRRv1-v2 Columbia River Gorge 2016

Radford et al. (2019) Banded snowfall HRRRv1-v2 Central and eastern
CONUS

NDJFM 2015/16, 2016/17, 2017/18

Blaylock and Horel
(2020)

Lightning threat HRRRv2-v3 CONUS MJJAS 2018, 2019

Fovell and Gallagher
(2020)

Surface and PBL
evolution

HRRRv3 CONUS 15 Dec 2018–15 Jul 2019

Duda and Turner
(2021)

Convective storm
objects

HRRRv3 Central and eastern
CONUS

April–September 2019

Dougherty et al. (2021) West Coast
precipitation

HRRRv3 California December 2018–February 2019

English et al. (2021) West Coast
precipitation

HRRRv3 and retro
HRRRv3

California February–March 2019

Chow et al. (2022) Smoke forecasts Retro HRRRv4 Western CONUS November 2018 (Camp Fire,
California)
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available (not shown). Sample sizes were also assessed for
all of the comparisons included (see upcoming figures). The
diurnal cycle of model performance is generally assessed using
6-h forecasts, because of the original design of the HRRR to
provide guidance for 0–15-h forecast ranges, although longer
forecasts are included where possible. Note that the sample
size for longer forecasts becomes progressively smaller, due
both to extended forecasts only being launched four times per
day, as well as increased likelihood of abbreviated forecasts
(for the experimental HRRR) and outages in the verification
system ingest.

The time periods included in the experimental HRRR eval-
uation are intended to reflect an approximate correspondence
to operational HRRR versions, and to allow some general
conclusions about version-to-version changes. During the
HRRR development process, controlled experiments on indi-
vidual system changes were very important for evaluating
candidate changes, with decisions guided by the scientific
method (formulating a hypothesis and testing it, modifying
the hypothesis if necessary, further testing, etc.). However, it
is beyond the scope of this paper to describe all of the many
changes involved in each HRRR upgrade. Instead, we take
advantage of relatively “frozen” code periods, generally
during the warm seasons of each year, to illustrate the net
forecast performance changes associated with each upgrade.
The configuration of the experimental HRRR does not always
exactly match an operational HRRR version, but close corre-
spondence occurs during the “frozen” code periods leading up
to each implementation. For this reason, comparisons during the
cool season are generally restricted to the operational HRRR.

Some results are also shown from controlled retrospective
experiments comparing HRRR versions for a particular season.
These experiments are configured identically to the real-time
simulations, although not subject to the occasional interrup-
tions and outages impacting the experimental HRRR. The ret-
rospective runs included running the upstream RAP and
HRRRDAS systems, where needed for initial and boundary
conditions and ensemble covariance information.

a. Verification approach

In this article, we use the Model Analysis Tool Suite
(MATS; Turner et al. 2020) developed within the NOAA
Global Systems Laboratory to evaluate HRRR forecasts.
Verification is undertaken in two basic frameworks: station-
based (for surface weather observations), and grid-to-grid
(for comparing HRRR forecasts against gridded observations
of precipitation or composite radar reflectivity). For continu-
ous variables, model errors are quantified in terms of root
mean squared error (RMSE; Wilks 2011), while mean fore-
cast biases are also calculated. For discontinuous (e.g.,

precipitation) or impact-based variables (e.g., radar reflectiv-
ity, ceiling, and visibility), verification is done in a contingency
table framework in which binary events are defined (generally
an exceedance of a threshold–for example, radar reflectivity
greater than 35 dBZ), and gridpoint forecasts can be classified
as hits, misses, false alarms, or correct negatives (Table 2).
Various performance metrics can be calculated based on
these contingency tables; the metrics used in this article are
shown in Eqs. (1)–(4):

CSI 5
a

a 1 b 1 c
, (1)

frequency bias 5
a 1 b
a 1 c

, (2)

POD 5
a

a 1 c
, (3)

FAR 5
b

a 1 b
: (4)

Particular attention is required for the verification of dis-
continuous fields such as precipitation, in which an inherent
scale mismatch exists between point surface rain gauge obser-
vations and a numerical model gridpoint (e.g., Tustison et al.
2001; Mittermaier 2014). Statistical comparisons must take into
account this scale difference; similarly, comparisons between
models and gridded observations must also account for dif-
ferences in scale. This scale mismatch is particularly pro-
nounced during the summer season when isolated convective
rainfall is widespread, while during the cool season additional
challenges emerge related to the measurement of snowfall
(e.g., Randriamampianina et al. 2021).

While alternative approaches for objective verification targeting
specific phenomena have been developed (e.g., object-
oriented approaches for comparing model QPF with quantita-
tive precipitation estimates (QPE), Bytheway and Kummerow
2015; Bytheway et al. 2017; surrogate severe verification, Sobash
et al. 2011), these approaches are considered beyond the scope
of this work.

b. Precipitation forecast accuracy (simulated composite
radar reflectivity and QPF)

One of the key capabilities of the HRRR is the prediction
of precipitation, and particularly precipitation associated with
deep, moist convection (e.g., D22), the occurrence of which
has large impacts for society. In this section, we present quanti-
tative verification of simulated composite radar reflectivity and
QPF. Simulated composite radar reflectivity, which is calcu-
lated based on model microphysical hydrometeor populations,

TABLE 2. Contingency table showing the four components based on observed/forecasted events (defined as exceedance of a
threshold).

Event observed? Yes Event observed? No

Event forecasted? Yes a (hit) b (false alarm)
Event forecasted? No c (miss) d (correct negative)
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is often used by forecasters to anticipate the timing, mode, and
evolution of convection, and thus represents an important fore-
cast variable. Reflectivity is verified against the Multi-Radar
Multi-Sensor (MRMS) mosaic developed by NSSL (Zhang
et al. 2016; Smith et al. 2016). QPF is compared against the
Stage-IV QPE product; the Stage-IV QPE is interpolated to
the 3-km HRRR grid using a neighborhood-budget approach.
Our ability to predict fine-scale precipitation in regions of
complex terrain may actually exceed our ability to observe it
(Lundquist et al. 2019), so we focus our analysis on the eastern
United States where there are fewer problems related to
sparse rain gauges and radar beam blockage. We investigate
reflectivity and QPF, as they are somewhat complementary; re-
flectivity is an instantaneous quantity, dependent on resolved
microphysical processes, while QPF is integrated across time.

Figure 2 shows verification of 25- and 35-dBZ composite
radar reflectivity forecasts over the eastern United States in
performance diagrams (Roebber 2009), where all 24 daily
HRRR initializations are aggregated together. Perfect forecasts
appear at the upper right of the diagrams, with high probability
of detection (POD) and low false alarm ratio (FAR), and with
a frequency bias of one falling near the diagonal line. Further-
more, the CSI is represented by the curved lines. HRRR fore-
casts and MRMS analyses are upscaled to a 20-km grid for
evaluation, which reduces penalizing slightly misplaced reflec-
tivity objects in the HRRR forecasts (Mittermaier 2014). The
upscaling is carried out with a neighborhood-budget approach
with all the 3-km grid boxes in each 20-km area. Using an eval-
uation grid coarser than 20-km increases overall skill, but rela-
tive performance of the different HRRR versions is insensitive
to grid size.

The pre-HRRRv1 version shown in the black curves did
not carry out any direct radar DA, leading to a sharp increase
in frequency bias during the early forecast hours for both re-
flectivity thresholds (Fig. 2). The first operational version of
the HRRR (Fig. 2, blue curves) featured a 1-h “pre-forecast”
hour with 15-min radar DA (described in more detail by
D22), which reduced this unphysical bias maximum at 2–3-h
forecast length.

The HRRRv2 (Fig. 2, green curves) featured an updated
version of the Thompson microphysics scheme, as well as
updated physics to combat a summertime low-level warm and
dry bias which was leading to spurious convective initiation over
the central United States (see section 2c for further details).
These improvements resulted in higher CSI scores throughout
the forecasts, with small improvements in frequency bias at lon-
ger forecast lengths for the 25-dBZ threshold (Figs. 2a,b).
HRRRv3 (Fig. 2, orange curves) featured further DA and phys-
ics changes. The reduction in frequency bias from HRRRv2 to
HRRRv3 is largely attributable to the reduced latent heating
applied during the RAP diabatic digital filter initialization
(DDFI) from RAPv3 to RAPv4 (see Weygandt et al. 2022, their
Table 2).

The final version of HRRR, HRRRv4, features ensemble radar
DA based on the 36-member HRRRDAS (D22, section 3d
therein), in addition to significant physics improvements. This

FIG. 2. Performance diagrams for HRRR composite reflectivity
forecast skill by lead time for different versions of HRRR, ana-
lyzed by warm seasons (15 Apr–15 Oct). “Ex” in the legend de-
notes statistics from the experimental HRRR; other periods are
taken from the operational HRRR. Verification is against the
MRMS reflectivity mosaic over the eastern CONUS (east of
1008W longitude), using a threshold of (a) 25 and (b) 35 dBZ. The
vertical axis is for probability of detection (POD), and the horizon-
tal axis is the success ratio [defined as one minus the false alarm ra-
tio (FAR)], both upscaled to a 20-km grid. Shown are forecast
lengths at 1-h intervals (circles) to 3 h, and then every 3–18 h,
where available, moving from top right to bottom left. Note that
forecasts beyond 15 h are not available until HRRRv2. The inset
curves in (a) shows the percent of hourly forecasts available for
each time period. The eastern CONUS contains 14554 20-km grid
boxes.
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results in radar reflectivity forecasts that have a relatively un-
changing bias with increasing forecast length. Overall, HRRRv4
reflectivity forecasts have a higher bias than HRRRv3, which is an
improvement for 1–3-h forecasts of 25 dBZ, but a degradation at
longer ranges and at 35 dBZ.

While Fig. 2 shows performance diagrams including all
hourly initialization times, it is possible to stratify results by
diurnal initialization time. Figure 3 shows time series of CSI
and frequency bias for prediction of 35 dBZ composite radar
reflectivity for the experimental HRRRv4 during the warm
season of 2020. In general, the benefit of DA can be seen with
the relatively high CSI (Fig. 3a) and reduced high frequency
bias (Fig. 3b) during the first few hours of each subsequent fore-
cast. However, all forecasts valid during the 1500–0300 UTC pe-
riod exhibit a dip in CSI due to the challenges of predicting
convective initiation (CI) and early convective evolution. In
general, HRRRv4 predicts too much convection (Fig. 2b), but
the shape of the bias curves (Fig. 3b) demonstrates that the
model has challenges with the timing of CI. The bias reaches a
minimum near 1900 UTC for all initializations, followed by a
maximum near 0200 UTC, indicating that the model overpre-
dicts the upscale growth of convection after CI.

Figure 4 illustrates QPF performance through the various
HRRR incarnations, as compared against Stage-IV QPE. This
figure compares 6-h experimental HRRR QPF against 6-h
Stage-IV QPE for (Fig. 4a) warm seasons and (Fig. 4b) cool
seasons. Note that year-to-year variability becomes significant
for the relatively rare events of greater than 1 in. (6 h)21, so

FIG. 4. Performance diagrams for HRRR QPF skill by precipita-
tion threshold for different versions of the HRRR, analyzed by (a)
warm seasons (15 Apr–15 Oct) and (b) cool seasons (15 Oct–15 Apr).
“Ex” in the legend denotes statistics from the experimental HRRR;
other periods are taken from the operational HRRR. Verification is
against the 6-h Stage-IV QPE over the eastern CONUS (east of
1008W longitude), evaluating 0–6-h experimental HRRRQPFs against
6-h Stage-IV QPE. The vertical axis is for POD, and the horizontal
axis is the success ratio (1 2 FAR), both upscaled to a 20-km grid.
Shown are 0.01-, 0.1-, 0.25-, 0.5-, and 1-in. thresholds, moving from top
right to bottom left. Percentage values in the legend indicate the data
availability for each time period. The inset curves show the percent of
6-h QPEs exceeding each threshold for (a) 15 Apr–15 Oct 2017
and (b) 15 Oct 2016–15 Apr 2017. The eastern CONUS contains
14 034 20-km grid boxes.

FIG. 3. Time series of (a) critical success index (CSI) and (b) fre-
quency bias of 1–18-h forecasts of 35-dBZ composite radar reflec-
tivity over the eastern CONUS for the experimental HRRRv4 dur-
ing warm season (15 Apr–15 Oct) 2020. Shown are HRRR
initializations every 3 h during the day, with the x axis showing
valid time in UTC. The CSI is upscaled to a 20-km grid.
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we exclude thresholds heavier than this. The HRRRv1 exhib-
its a monotonic decrease in QPF skill with increasing precipi-
tation threshold, with a high bias evident at all thresholds
during the warm season (Fig. 4a, blue curve); HRRRv2,
benefiting from model physics changes, exhibits a dramatically
higher CSI than HRRRv1 [note the position of the 0.25, 0.5,
and 1 in. (6 h)21 points in Fig. 4a, blue curve to green curve]
but exhibits a greatly increased frequency bias relative to
HRRRv1 (Fig. 4a, green curve). The HRRRv3 and HRRRv4
have exhibited a low bias for light to moderate precipitation
amounts (less than one inch per 6 h), although less so at longer
forecast lead times (not shown). He et al. (2022, manuscript
submitted to J. Adv. Model. Earth Syst.) also document a
HRRRv4 low bias in 2-m moisture and latent heat flux due to

a dry bias in soilmoisture related to an underprediction of precipi-
tation. Candidates for reduced 0–1-h precipitation in HRRRv4
are related to an aspect of its data assimilation (use of ensemble
mean) and cooler 2-m temperatures. Overall, HRRRv2 exhibits
the highest skill for warm season QPF, but at the cost of a high
bias atmoderate to high precipitation thresholds.

For the cool season (Fig. 4b), differences between HRRR ver-
sions appear much smaller than in the warm season, although
skill is generally higher than during the warm season. Changes in
HRRRv3 and HRRRv4 led to reductions in the high wintertime
QPF frequency bias at the lower thresholds.

Figure 5 shows seasonal evaluations of 0–6-h HRRR QPF
versus Stage-IV QPE for the various versions of the HRRR. The
maps are presented in terms of the difference (QPF minus QPE)

FIG. 5. Maps of the ratio of total 0–6-h HRRR QPFs vs Stage-IV 6-h QPEs for operational (a)–(c) HRRRv1, (d)–(f) HRRRv2, and
(g)–(i) HRRRv3. The ratio is formulated as (QPF–QPE)/QPE, such that zero indicates perfect agreement for the season; positive values
indicate QPF . QPE, and negative values indicate QPF , QPE. Shown are (left),(right) cool seasons (15 Oct–15 Apr) and (center)
warm seasons (15 Apr–15 Oct).
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normalized by QPE, where both QPF and QPE are summed
over the periods indicated. Due to the timing of HRRR imple-
mentations during the summer, there are more unbroken cool
seasons than warm seasons of a fixed HRRR version available
for the evaluation. The left and right columns show cool seasons
for various years, while the middle column shows warm seasons.
HRRRv1 is shown in the top row, HRRRv2 in the middle row,
and HRRRv3 in the bottom row; the western United States is ex-
cluded from the analysis due to the uncertainties with Stage-IV
QPE in that region. HRRRv4 results are not shown in this figure
as it has not yet run long enough to provide seasonal results.

The availability of two cool seasons for each HRRR version
allows a qualitative assessment of the statistical significance of
the regional features which emerge. It is seen that each HRRR
version exhibits consistent patterns of disagreement with QPE
across two different cool seasons. HRRRv1 exhibits a relative
dry bias in the northern plains, but HRRRv1 QPF agrees rela-
tively well with QPE in the southeastern CONUS (Figs. 5a,c).
HRRRv2 exhibits a similar pattern, but with a moist bias in the
southeastern CONUS (Figs. 5d,f). HRRRv3 once again has a
more neutral bias in the southeastern CONUS, but with a
more pronounced dry bias in the high plains and the northern
CONUS. Evaluating 6–12-h QPFs (not shown) reveals similar spa-
tial patterns, although drier (closer to QPE) in the southeastern
CONUS, particularly for HRRRv1 and HRRRv2.

During the warm season (Figs. 5b,e,h), HRRRv1 and
HRRRv2 both exhibited a significant moist bias throughout
the eastern CONUS (Figs. 5b,e). HRRRv3 exhibits a dramatic
improvement in the warm-season QPF, with a more neutral
bias in the southern and eastern CONUS (Fig. 5h), although
introducing a dry bias in the northern CONUS. These results
are subject to uncertainties related to the quality of the Stage-
IV QPE dataset, but they allow some generalizations regard-
ing changes in HRRR 0–6-h QPF between versions. At longer
forecast ranges (6–12 h; not shown), the HRRRv1 and
HRRRv2 exhibited a much reduced moist bias throughout the
CONUS. These results suggest that the initialization of con-
vection in HRRRv1 and HRRRv2 led to excessive QPF in the
first few hours of the simulation, with less impact in HRRRv3;
this is again largely attributable to the reduced strength of la-
tent heating in the RAP DDFI from RAPv3 to RAPv4 (see
Weygandt et al. 2022, their Table 2).

c. Surface weather forecast accuracy (2-m temperature
and dewpoint, and 10-m wind)

Since the vast majority of human activity occurs at or near
Earth’s surface, another key metric of weather forecast accuracy
is the performance of surface weather forecasts. Temperature
and moisture observations at shelter level [2 m above ground
level (AGL)] can be used to evaluate HRRR forecasts, in

FIG. 6. The 2-m temperature 6-h forecast performance by valid time for the experimental HRRR, analyzed by warm seasons (15
Apr–15 Oct), which approximately correspond to operational versions of the HRRR. Verification is against METAR observations over
(a),(b) the eastern CONUS (generally 1380–1480 sites); (c),(d) the western CONUS (generally 510–580 sites); and (e),(f) Alaska (gener-
ally 100–130 sites). (left) RMSE and (right) bias. Percent of hourly 6-h forecasts available for each period are indicated in the legend in (a)
for CONUS and in (e) for Alaska.
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addition to wind observations at standard height (10 m AGL).
The verification shown here is based on forecast comparisons
against METAR stations in the HRRR CONUS domain (∼1800
stations) mostly in the lower 48 United States and in Alaska.
We present verification of 6-h forecasts, averaged at each hour
of the diurnal cycle, as well as forecast performance by lead
time. More detailed analysis of HRRRv3 is presented by Fo-
vell and Gallagher (2020), and of HRRRv3 and HRRRv4 by
He et al. (2022, manuscript submitted to J. Adv. Model. Earth
Syst.). Again, Tables 2 and 4 in D22 provide an excellent refer-
ence on the changes involved in each HRRR upgrade for inter-
preting these results.

1) 2-M TEMPERATURE FORECASTS

Figure 6 shows the average diurnal cycle of 2-m tempera-
ture 6-h forecast RMSE (left) and bias (right) for the eastern
United States (top), western United States (middle), and

Alaska (bottom), for warm season 6-h forecasts. Verification
for the CONUS subdomains is based on hourly HRRR fore-
casts, while the Alaska verification is based on HRRR-AK
simulations launched only every 3 h (see D22, their Table 4).
For the eastern and western CONUS, and for all HRRR ver-
sions, 2-m temperature errors are generally lowest around or
shortly after sunrise (Figs. 6a,c). In terms of 2-m temperature
bias, HRRRv1 and especially the pre-HRRRv1 exhibited a
strong diurnal cycle of bias in both the eastern and western
CONUS (Figs. 6b,d, black curves). HRRRv1 had a warm and
dry bias in the daytime PBL over much of the domain during
the summer, particularly in the eastern CONUS (Fig. 6b, blue
curve); it was hypothesized that this bias and the associated
spurious convective development mentioned in the previous
section were linked by a mechanism described in the feedback
cycle outlined in Fig. 10 of B16. Insufficient cloud cover in the
HRRRv1 was leading to overly deep mixing and too-deep

FIG. 7. The 2-m temperature 6-h forecast performance by valid time forHRRRv1 (dashed–dotted curves) andHRRRv2
(solid curves), for a summer retrospective experiment during 15 Jul–15Aug 2014. (a),(b) The 2-m temperature; (c),(d) 2-m
dewpoint temperature; and (e),(f) 10-m wind speed. (left) RMSE; and (right) bias. Results are shown for the eastern
CONUS (blue) and thewesternCONUS (red).Difference inRMSE (HRRRv22HRRRv1) is shown in (a) and (c).

J AME S E T A L . 1405AUGUST 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:31 PM UTC



PBLs, especially in the summertime, and an excess of incoming
solar irradiance. This excessive low-level mixing tended to
overcome convective inhibition too readily, producing spurious
convection in the model.

To alleviate the biases in the initial version of the opera-
tional HRRR, development took place particularly in the
model physics parameterizations. One of the foremost changes
implemented in HRRRv2 was an increase of the “wilting

FIG. 8. As in Fig. 7, but comparing HRRRv2 and HRRRv3 for a winter retrospective experiment (1–31 Jan 2017).

FIG. 9. Average downwelling shortwave irradiance bias for 6-h forecasts from HRRRv3 (red)
and HRRRv4 (blue) from 1 Dec 2019–1 Dec 2020. Verification is against 14 SURFRAD/
SOLRAD observations across CONUS.
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point” within cropland regions in the RUC LSM, effectively
allowing continued transpiration from irrigated crops and
increasing low-level relative humidity; the effects of this
change were most pronounced over the agriculture-rich Great
Plains of the United States. Another major adjustment was
allowing the RRTMG radiation scheme to interact with
boundary layer clouds within the MYNN PBL scheme, having
the net effect of increasing low-level cloudiness and reducing
solar irradiance reaching the surface. A secondary low-level
cooling effect comes from attenuation from climatological
aerosol loading within the Thompson aerosol-aware micro-
physics scheme. These changes are described in more detail by
B16 (their section 6). Within the HRRR DA, a number of
changes were made to address the warm/dry bias in the
HRRRv1. Hybrid ensemble-variational DA, having been shown
to greatly improve forecasts of upper-level wind and other varia-
bles within the 13-km RAP (Hu et al. 2017), was implemented
in the HRRR beginning with HRRRv2. Focusing more specifi-
cally on the model biases, PBL “pseudo-innovations” (B16, their
section 2f) were introduced for surface temperature (in addition
to surface dewpoint) in order to extend the influence of surface
observations in the vertical in well-mixed situations. In addition,
assimilation of 2-m temperature and dewpoint observations was
modified to be more consistent (accounting for the difference in
height between the typical 2-m height of sensors and the lowest
model level, near 8 m AGL). These changes led to the error

characteristics outlined by the green curves (HRRRv2) in Fig. 6.
HRRRv2 featured a dramatically improved 2-m temperature
RMSE and bias around the clock in the eastern United States
(Figs. 6a,b), and a reduction in RMSE in the western United
States (Fig. 6c). Figure 7 shows results for a controlled retrospec-
tive experiment comparing HRRRv1 versus HRRRv2 perfor-
mance for the summer season (15 July–15 August 2014). As
shown in Figs. 7b and 7d, the daytime warm and dry bias in
HRRRv1 was particularly pronounced in the summer, and was
dramatically improved with the physics and DA changes imple-
mented in HRRRv2. These improvements also led to major
RMSE reductions during the daytime for both 2-m temperature
and 2-m dewpoint temperature (Figs. 7a,c).

HRRRv2 exhibited a different set of biases. In particular,
forecasters noted a continued tendency for the model to quickly
erode low-level cloud cover. A high-frequency bias in simulated
radar reflectivity and precipitation in the first few hours of the
HRRR forecasts was also noted. Due to these issues, the focus
of the HRRRv3 upgrade was to improve retention of low
clouds, and reducing a short-lead-time high precipitation/simulated
radar reflectivity bias, as well as improved 2-m temperature/
dewpoint diurnal cycles in summertime. DA changes in the
HRRRv3 were motivated by observed short-range forecast
biases present in the HRRRv2. In particular, the high bias in
precipitation during the first few hours of the forecast motivated
a reduction in the strength of the latent heating applied in the

FIG. 10. As in Fig. 6 (during warm season), but by forecast lead time, and showing forecasts initialized at 1200 UTC (solid lines) and 0000 UTC
(dashed lines).
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RAP DDFI within regions of high observed three-dimensional
radar reflectivity (see D22, their Table 2). In the realm of model
physics, significant updates were made to several parameteri-
zation schemes (for more details, see D22, their Table 4 and
sections 2b and 2c). HRRRv3 improvements for the surface
variables are relatively small when averaged through the warm
season (Fig. 6, yellow curves). However, Fig. 8 illustrates that
improvements were more substantial during the winter season;
these results are derived from a controlled retrospective exper-
iment during 1–31 January 2017. Improved treatment of sub-
grid snow coverage, as well as subgrid cloud cover, led to
significant reductions in forecast errors for 2-m temperature
and dewpoint in the western United States (Figs. 8a,c), and re-
duction of a daytime cool bias in the eastern United States
(Fig. 8b). A nighttime warm and dry bias is also reduced in the
western United States (Figs. 8b,d). HRRRv3 represents the

first operational version of the HRRR, which included an
Alaska domain, and Figs. 6e and 6f show error and bias char-
acteristics of these initial Alaska forecasts (yellow curves).

The HRRRv4, as described in the previous section, fea-
tured several major advances, both for DA and model phys-
ics, leading to improved forecasts both for the CONUS and
Alaska domains. A major focus of the HRRRv4 upgrade was
further targeting the representation of low clouds and their
tendency to prematurely erode in the HRRRv3 configuration.
In addition, a storm-scale ensemble DA capability is introduced
for the CONUS HRRR for the first time, as described by D22
(section 3d), resulting in improved short-range forecasts of con-
vective evolution and the PBL. These changes led to forecast
performance characterized by the red curves in Fig. 6. The
HRRRv4 exhibits decreases in 2-m temperature RMSE for all
three regions (Figs. 6a,c,e), but most pronounced in the western

FIG. 11. The 2-m temperature 6-h forecast performance by valid time for the experimental
HRRR, analyzed over a ∼4.5-yr period, using 30-day averages. Verification is against METAR
observations; (a) RMSE, (b) daytime bias, and (c) nighttime bias. Daytime is considered
1500–2100 UTC for the eastern CONUS, 1700–2300 UTC for the western CONUS, and
1900–0100 UTC for Alaska. Nighttime is considered 0300–0900 UTC for the eastern CONUS,
0500–1100 UTC for the western CONUS, and 0700–1300 UTC for Alaska.

WEATHER AND FORECAS T ING VOLUME 371408

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:31 PM UTC



United States (Fig. 6c). The dramatic improvements in cloud
coverage associated with the HRRRv4 upgrade are further
illustrated in Fig. 9, showing average biases in 6-h forecast
shortwave irradiance across the seasonal cycle for the opera-
tional HRRRv3 versus the experimental HRRRv4 during
2020. Shortwave irradiance forecasts are evaluated against the
Surface Radiation Budget (SURFRAD) and SOLRAD
Network (Augustine et al. 2000), with 14 of 16 stations report-
ing during this period, spread across the lower 48 United
States. It is evident in Fig. 9 that the high bias in downwelling
shortwave irradiance is reduced by up to 50% in HRRRv4.

Figure 10 shows 2-m temperature forecast performance by
lead time for the various HRRR versions, for warm season
simulations initialized at 0000 (dashed lines) and 1200 UTC
(solid lines). Note that Fig. 10 differs from Fig. 6 in that it
shows forecast skill across lead times for just two daily model
initialization times, while Fig. 6 shows 6-h forecasts from all
initialization across the diurnal cycle. Across CONUS, both
the preoperational version of HRRR (black curves) and
HRRRv1 (blue curves) featured large RMSEs up to 12-h
forecast length (Figs. 10a,c). The preoperational HRRR exhib-
ited a nighttime warm bias and daytime cool bias (Figs. 10b,d;
black curves); HRRRv1, on the other hand, exhibited a warm
bias, increasing with forecast lead time (blue lines). Later
HRRR versions show incremental reduction of this daytime
warm bias in the eastern CONUS (Fig. 10b). The HRRRv2
(green curves) exhibited lower CONUS RMSEs out to 12-h fore-
cast length (Figs. 10a,c), associated with the physics improvements
described above. Changes in warm season 2-m temperature

RMSE and bias from HRRRv2 to HRRRv3 (yellow curves)
were subtle, but improvements are seen again with HRRRv4
(red curves). In particular, the largest reductions in RMSE are
seen in the western United States (Fig. 10c), associated with
improved covariance representation in complex terrain, and
improved treatment of subgrid clouds. Warm season results
for Alaska are shown in Figs. 10e and 10f; once again we see
an improvement in 2-m temperature RMSE in HRRRv4
(Fig. 10e), but an afternoon/early evening cool bias of ∼18C
present in HRRRv4 (Fig. 10f).

Figure 11 illustrates the seasonal cycle of skill for 6-h fore-
casts of 2-m temperature from the experimental HRRR,
showing RMSE (Fig. 11a), daytime bias (Fig. 11b), and night-
time bias (Fig. 11c). The Northern Hemisphere winter season
(December–February) is indicated for clarity. The time series
includes several HRRR versions, but consistent seasonal pat-
terns emerge. In general, highest errors and coolest bias are
seen in the winter for the eastern United States, with warm
biases in the summer. In the western United States, similar
patterns exist, but with larger errors than in the eastern
United States, and with warmer 2-m temperature biases (warm
biases overall throughout the seasonal cycle). As can be seen
in Fig. 11a, Alaska is a challenging domain for short-range
forecasts, partially due to the lack of observations (both locally,
and upstream for the global model which provides lateral
boundary conditions); errors for 2-m temperature are close to
those over the eastern United States during the summer sea-
son, but much larger than either CONUS region during the
winter (Fig. 11a). Large wintertime temperature errors in

FIG. 12. As in Fig. 6 (for 6-h forecasts during warm season), but for 2-m dewpoint temperature.
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Alaska are also likely related to the development of extreme
surface-based inversions and shallow arctic air. Temperature
biases in Alaska are near neutral in the autumn, but quickly
develop into a significant cool bias by late winter/early spring
during both the daytime and the nighttime (figs. 11b,c). Note
that the diurnal cycle is very muted during the Alaskan winter
due to the high latitude.

2) 2-M DEWPOINT FORECASTS

Figure 12 shows 6-h forecast skill for warm season 2-m dew-
point temperature forecasts for the various model versions.
Dewpoint temperature forecast errors are lowest overnight
(Figs. 12a,c,e), as mixing out of low-level moisture is less prev-
alent at night. The pre-HRRRv1 version featured a substan-
tial moist bias in the eastern United States, most pronounced
during the afternoon and overnight hours (Fig. 12b, black
curve). HRRRv1 exhibited a dramatic reduction of this moist
bias (to a pronounced dry bias during the daytime), with a
major decrease of dewpoint RMSE during the late afternoon
and overnight hours (Figs. 12a,b, blue curves). HRRRv2, with
changes aimed at improving the representation of the summer-
time PBL and reducing the occurrence of spurious convection,
exhibited a more neutral dewpoint bias in the eastern United
States during the daytime and a reduced daytime RMSE in
both the eastern and western United States (Figs. 12a,b,c,
green curves). As for 2-m temperature forecasts, warm season

HRRRv3 performance (shown by the orange curves in Fig. 12)
is similar to HRRRv2. HRRRv4 exhibits relatively low 2-m
dewpoint RMSEs for all three domains (Figs. 12a,c,e; red
curves), but a dry bias for the CONUS, most pronounced in
the western United States (Figs. 12b,d). The summertime dew-
point bias over Alaska is near neutral (Fig. 12f).

Figure 13 shows warm season forecast performance by lead
time for 2-m dewpoint temperature. Dewpoint RMSEs exhibit
a stronger increase with lead time in 1200 UTC initializations
as compared with 0000 UTC initializations, particularly over
the CONUS (Figs. 13a,c). Dewpoint RMSEs exhibit major
nighttime reductions from pre-HRRRv1 to HRRRv1, and
daytime reductions from HRRRv1 to HRRRv2 (Figs. 13a,c).
In the eastern CONUS, the preoperational HRRR exhibited a
moist bias throughout the diurnal cycle, but HRRRv1 exhib-
ited a daytime dry bias (increasing with lead time) but a near
neutral bias in nighttime (Fig. 13b). HRRRv2 and v3 exhibit
near neutral 2-m dewpoint biases in the eastern United States
(Fig. 13b), with minimal bias growth during the forecast, while
HRRRv4 exhibits an increasing daytime dry bias in the
CONUS (Figs. 13b,d). Most versions of HRRR exhibit a dry
bias in the western CONUS (Fig. 13d), which, in combination
with the daytime warm bias (Fig. 10d), has been noted by fore-
casters to contribute to predictions of worse fire weather con-
ditions as compared with other forecast guidance. For Alaska,
HRRRv4 has reduced 2-m dewpoint RMSEs, and a near
neutral bias (Figs. 13e,f, red curves).

FIG. 13. As in Fig. 10, but for 2-m dewpoint temperature.
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Figure 14 shows the seasonal cycle of 2-m dewpoint temper-
ature errors over the past few years. Overall, seasonal cycles
of errors for the various domains are similar to those for 2-m
temperature (Fig. 11), although errors for dewpoint tend to be
higher, particularly in the western United States. Daytime
dewpoint biases tend to be somewhat anticorrelated with 2-m
temperature biases across the seasonal cycle; e.g., warm biases
are associated with dry biases, and vice versa. Daytime dew-
point biases in the CONUS exhibit a strong seasonal cycle
with a wintertime moist bias and a summertime dry bias. In
the eastern United States, 2-m dewpoint forecasts exhibit a
larger-magnitude seasonal cycle in RMSE than 2-m tempera-
ture forecasts.

3) 10-M WIND FORECASTS

Figure 15 shows warm season 6-h forecast performance for
10-m wind speed. Forecast skill for 10-m winds has improved
from HRRR version to HRRR version, with reductions in
RMSE for all three domains (Figs. 15a,c,e). Wind speed bias
exhibits much less version-to-version variability than 2-m

temperature or dewpoint. Wind speed forecasts exhibit a
somewhat high bias (Figs. 15b,d,e), particularly in the eastern
United States (Fig. 15b). HRRRv4, featuring a gravity wave
drag scheme (e.g., D22, section 2b therein) has lower RMSE
in the western United States than HRRRv3 (Fig. 15c); the im-
provement is more minor in the eastern United States due to
the smoother terrain in that region (Fig. 15a). The HRRRv4
for Alaska does not run a gravity wave drag scheme (see D22,
p. 15).

Figure 16 shows warm season forecast performance by lead
time for 10-m wind speed. Similarly to 2-m dewpoint forecasts
(Fig. 13), errors increase much more rapidly in 1200 UTC ini-
tializations than in 0000 UTC initializations. Successive ver-
sions of HRRR generally feature reduced 10-m wind speed
RMSE (Figs. 16a,c,e). In the eastern United States, all ver-
sions have featured a high wind speed bias (Fig. 16b).
HRRRv4 has higher wind speeds than HRRRv3 for both
CONUS and Alaska (Figs. 16b,d,e).

Figure 17 shows the seasonal cycle of forecast performance
for 10-m wind speed. Both the eastern and western U.S.

FIG. 14. As in Fig. 11, but for 2-m dewpoint temperature.
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domains exhibit relatively high errors during the windy spring
season, but lower errors in the autumn (Fig. 17a); errors are
lower in the eastern United States than the western United
States. Alaska exhibits a much stronger seasonal cycle in fore-
cast skill, with large errors in winter. HRRR forecasts for the
eastern United States exhibit a consistent high wind speed
bias during both day and night, while forecasts for the western
United States are relatively unbiased on average (Figs. 17b,c).
Wind speed forecast biases in Alaska have a seasonal cycle,
with a low bias in the late winter–early spring, and a high bias
in the late summer–early autumn (Figs. 17b,c), and a higher
bias at night than during the daytime.

In summary, each subsequent version of the HRRR has
featured targeted DA and model physics improvements
aimed at least partially at improving surface weather fore-
casts, verified here by comparison against METAR 2-m tem-
perature and dewpoint and 10-m wind speed observations for
both the eastern and western United States. Challenges re-
main with the treatment of the evening transition of the PBL
and other aspects of PBL evolution, but the performance of
the operational HRRRv4 represents an initial baseline for
evaluating next-generation convection-allowing models.

d. Cloud ceiling and surface visibility forecast accuracy

Accurate forecasts of low cloud ceilings and reduced visibil-
ity are critical for many applications, particularly for transpor-
tation. Low cloud ceilings determine flight rules for aviation
and can significantly affect operations at airports. An accurate
representation of cloud characteristics, including cloud ceiling,

is important for representing boundary layer evolution overall,
with associated impacts on forecasts for severe weather and
renewable energy, for example. HRRR carries out a unique
nontraditional DA technique designed to merge cloud infor-
mation from a model background with updated information
from surface ceilometer observations and satellite cloud top
observations. This technique, described in more detail by
Benjamin et al. (2021), initializes stratiform clouds in HRRR,
permitting more accurate forecasts in the first few hours after
initialization. In this section, we quantify forecast perfor-
mance in terms of prediction of the occurrence of cloud ceil-
ings below the key thresholds of 3000, 1000, and 500 ft AGL
(914, 305, and 152 m AGL), and the occurrence of surface
visibility below the thresholds of 5, 3, and 1 mi (8, 4.8, and
1.6 km).

Figure 18 describes HRRR cloud ceiling forecast performance
across various versions. These results are taken from the opera-
tional HRRR and are for years defined as December–November,
allowing comparison with HRRRv4 for the period 2020–21. The
changes implemented with HRRRv2 were not particularly tar-
geted at improved ceiling forecasts, but the impacts of changes
are seen in the differences between the blue and green curves in
Fig. 18. HRRRv2 exhibits an increased high bias in occurrence of
low clouds for most thresholds and forecast lengths, as well as a
reduction in CSI for 1000-ft ceilings and an improvement in CSI
for 500-ft ceilings. HRRRv3 featured several changes aimed at
improving low cloud forecasts, including consistent cloud build-
ing from both satellite and METAR cloud observations below
1200 m AGL, and a decrease in the assumed cloud water or

FIG. 15. As in Fig. 6 (for 6-h forecasts during warm season), but for 10-m wind speed.
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cloud ice mixing ratio when clouds are built (implying smaller
cloud hydrometeors and longer cloud retention). Physics
changes to improve the representation of cloud cover within
the MYNN PBL scheme also contribute to cloud improve-
ments in HRRRv3. These changes led to an improvement in
CSI for occurrence of ceilings at 3000, 1000, and 500 ft (Fig. 18,
orange curves). In addition, a high frequency bias in occurrence
of low clouds is generally reduced (improved; Fig. 18). HRRRv4
features substantial physics changes for low-cloud retention, as
well as storm-scale covariance information for DA. This leads to a
reduction in the magnitude of the frequency bias drop across lead
times for all ceiling thresholds (cf. orange and red curves in
Fig. 18). For 3000- and 500-ft ceilings, the HRRRv4 exhibits a near
neutral frequency bias at forecast lengths beyond 1 h (Fig. 18).

Figure 19 shows surface visibility forecasts for the opera-
tional HRRR, evaluated for six month periods to allow inclu-
sion of HRRRv1 (ceiling results are not available prior to
January 2016). Surface visibility is diagnosed in HRRR as
described by Benjamin et al. (2020). The diagnosis is dependent
upon low-level relative humidity and precipitation hydrome-
teors, and, with HRRRv4, also upon smoke concentrations. A
dramatic improvement in CSI is evident in HRRRv2 (Fig. 19,
green curves) as compared with HRRRv1 (blue curves).
HRRRv3 visibility forecasts generally exhibited a higher CSI
than HRRRv2 forecasts for the shorter forecast lengths (Fig. 19,
green to orange curves). This improvement in CSI was associated
with a reduced frequency bias for 1-mi visibility (Fig. 19, orange

curve with stars). Storm-scale covariance information used in the
HRRRv4DA led to a reduced drop in CSI for the first few hours
of the forecast compared to HRRRv3 (Fig. 19; red curves).

Improved cloud ceiling and surface visibility representation
is important for many applications, especially surface and avi-
ation transportation. In this section, we have summarized
HRRR performance for these variables across a number of
important thresholds, demonstrating the forecast improve-
ments stemming from both DA and model physics develop-
ment. More details on the stratiform cloud hydrometeor
analysis system, which is a critical component of the HRRR’s
overall cloud ceiling and visibility forecast capabilities, are
provided by Benjamin et al. (2021), with quantification of the
forecast impacts in the RAP.

5. Future directions and conclusions

The HRRR represents the first operational hourly updating
CAM in the United States, and as such, it has proven to be a
critical tool for forecast users interested in short-range, high-impact
weather forecasting. The HRRR adds increased capability and
value over the output from the mesoscale RAP system, explic-
itly forecasting the evolution of convective storms as well as
orographic effects on scales of tens of kilometers. The benefits
of convection-allowing grid spacing (∼3–4 km) over mesoscale grid
spacing (∼10 km) have been documented for convective
storms by Done et al. (2004) and Weisman et al. (2008). While

FIG. 16. As in Fig. 10, but for 10-m wind speed.
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major progress has been achieved since the implementation of
HRRRv1, many forecasting challenges persist for future genera-
tions of CAM guidance to address. These challenges include, for
example, convective initiation, MCS evolution, PBL develop-
ment in complex terrain, and the initialization of clouds and pre-
cipitating systems in general. The HRRR represents a baseline
against which future CAM forecasts can be evaluated, although
further work is needed to define a statistical baseline for evaluating
forecast improvements at longer lead times, and across broader
geographic domains.

The fourth version of the HRRR, HRRRv4, is the last oper-
ational version of the HRRR. Beyond the HRRR, NOAA is
moving toward the Unified Forecasting System (UFS), based
on the Finite Volume cubed sphere (FV3; Chen et al. 2013), to
consolidate NWP development within the United States; this
effort will involve wide collaboration with many laboratories
and the university community. Within this framework, CAM
DA and model physics development which has focused on
the HRRR system has shifted toward the development of a
UFS-based Rapid Refresh Forecast System (RRFS), with a
view toward replacing the HRRR system later this decade.

Such an RRFS system will enable developers from various
laboratories and universities to collaborate on common prob-
lems, and advance the state of the science for CAM NWP.

Future development efforts within the RRFS era will involve
an increased focus on ensemble design, which will pave the
way for an explicit representation of uncertainty in forecasting,
and will also lead to major benefits in storm-scale DA through
more realistic covariance structures. The HRRR Ensemble sys-
tem (HRRRE; Dowell et al. 2016), which ran experimentally
during much of the recent HRRR development era, was an initial
step in this direction. Ongoing development is focusing on a proto-
type RRFS ensemble (RRFSE), experimenting with both initial
condition perturbations as well as physics perturbations (Kalina
et al. 2021). The RRFSE is a prototype single-core ensemble sys-
tem with 9members, and is being evaluated for potential to replace
the operational ensemble HREF system (Roberts et al. 2019).

The RRFS era could also feature an increasing linkage with
important Earth system components. The HRRRv4 has taken
small steps in this direction with the usage of one-way cou-
pling for lake surface temperatures and ice cover over the
Great Lakes, as well as the introduction of a smoke tracer

FIG. 17. As in Fig. 11, but for 10-m wind speed.
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with radiation interactions. Future Earth system components
to be increasingly coupled with meteorology include the ocean,
sea ice, land surface vegetation, additional aerosols including
blowing dust and volcanic ash, and chemical species for air
quality forecasting. Including the effects of these complicated
systems in a computationally efficient manner within a unified
NWP system is a challenging goal that will require broad col-
laboration within and beyond NOAA, but will lead to signifi-
cant forecast improvements.

As computational resources increase in the coming years,
the horizontal extent of the modeling domains used for CAM
systems will expand in order to improve treatment of incom-
ing weather systems and account for long-range transport of
chemical species. Increasing resources will reduce the need
for nested domains, although very high-resolution CAM con-
figurations will remain important for local events and regions
of interest (e.g., Mailhot et al. 2012; Golding et al. 2014).
Expanding CAM domains will necessitate the development of
a three-dimensional global radar analysis for use in initializing
precipitating systems, as well as improved storm-scale satellite
DA, which represent major technical challenges in their own
right. However, enabling the development of a global rapidly
updating CAM system will benefit many aspects of society
across our increasingly connected world, and save lives and
property in many regions subject to extreme weather.
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Data availability statement. HRRR data are now publicly
available via archives hosted by Amazon Web Services (https://
registry.opendata.aws/noaa-hrrr-pds/) and Google Cloud Platform

FIG. 18. Performance diagram for HRRR cloud ceiling forecasts for
CONUS, verified against METAR observations (1700–1800 stations
per hour). The x axis is success ratio (1 2 false alarm ratio), and
the y axis is probability of detection. HRRR results for HRRRv1
(December 2014–November 2015), HRRRv2 (December 2016–
November 2017), HRRRv3 (December 2018–November 2019),
and HRRRv4 (December 2020–November 2021). Results are
shown for 3000-, 1000-, and 500-ft ceiling occurrence, for 0-, 1-, 3-,
6-, 9-, 12-, 15-, 18-, 21-, and 24-h forecasts for threshold. Note that
HRRRv1 results only extend through 15 h, and HRRRv2 results
only extend through 18 h.

FIG. 19. Performance diagram for HRRR surface visibility fore-
casts for CONUS, verified against METAR observations
(1700–1800 stations per hour). The x axis is success ratio (1 2 false
alarm ratio), and the y axis is probability of detection. HRRR results
for HRRRv1 (January–July 2016), HRRRv2 (January–July 2017),
HRRRv3 (January–July 2019), and HRRRv4 (January–July 2021).
Results are shown for 5-, 3-, and 1-mi visibility occurrence, for
0-, 1-, 3-, 6-, 9-, 12-, 15-, 18-, 21-, and 24-h forecasts for each
threshold. Note that HRRRv1 and HRRRv2 results only extend
through 15 h.
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(https://console.cloud.google.com/marketplace/product/noaa-
public/hrrr?project=python-232920&pli=1). While experimental
HRRR output in this study is not publicly available, the opera-
tional HRRR output available from the cloud providers could
be used to evaluate the results of this study. Real-time hourly
forecasts are available from the NOAA/National Centers for
Environmental Prediction (NCEP) Central Operations (NCO)
(https://nomads.ncep.noaa.gov/pub/data/nccf/com/hrrr/prod/).
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